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Abstract
We present VRCare, a VR-based eye screening tool enabling remote,
self-guided vision assessments for colour blindness, visual field,
myopia, and contrast sensitivity. A user study with 33 participants
evaluated usability, comfort, and perceived effectiveness. Partici-
pants rated the system highly for intuitiveness (4.45/5), ease of use
(4.48/5), and comfort (4.27/5), with 91% willing to reuse the tool.
Lower confidence in diagnostic accuracy (3.76/5) and reports of
mild discomfort highlight the need for clinical validation and er-
gonomic refinement. Overall, findings demonstrate VR’s potential
for accessible vision screening outside clinical settings.

CCS Concepts
• Human-centered computing→ Virtual reality.
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1 Introduction and Related Works
Over 2.2 billion people live with vision impairment, with at least
1 billion cases preventable or untreated [11]. Early screening for
myopia, visual field loss, contrast sensitivity, and color blindness
remains limited by specialist shortages, high costs, and access barri-
ers. Virtual reality (VR) offers controlled 3D stimulus presentation,
immersion, and portability, making it a promising platform for
vision screening.

Existing tools are mostly non-VR or focused on training and edu-
cation (e.g., NGENUITY®, ARTEVO®) [2, 3, 5].We presentVRCare,
a proof-of-concept VR system integrating four tests—refraction,
perimetry, contrast sensitivity, and Ishihara plates. Unlike prior
approaches, VRCare is self-guided, runs on consumer headsets,
and targets remote use. While clinical validation is future work,
feasibility is demonstrated alongside known limitations (e.g., false
positives, lack of monocular control).
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Recent studies support VR’s potential: VR perimetry has shown
accuracy comparable to SAP with better tolerance [4, 9], while con-
trast sensitivity tests using optokinetic responses achieved strong
reliability [10]. Other systems (e.g., VR-SFT [8], VisionaryVR [1])
focus on clinical diagnostics or simulation but face hardware con-
straints.

VRCare differs by prioritizing early, accessible screening. It
lowers barriers to preliminary testing, encouraging users to seek
professional evaluation when issues are detected.

2 VR System Design & Implementation
2.1 System Architecture
VRCare was built in Unity for the Meta Quest 3 with modular
diagnostic tests (myopia, visual field, contrast sensitivity, color
vision) managed by a central controller. This enables extensibility
and streamlined data collection.

2.2 UX Design Principles
Design prioritized comfort and low VR sickness. Following Sensory
Conflict Theory [6], users remain seated with no artificial motion.
Based on Postural Instability Theory [7], tasks use central stimuli
and stable fixation to limit movement. Lightweight rendering and
stable frame rates reduce latency and artifacts.

2.3 Diagnostic Modules
Four immersive tests were implemented: Field of vision: detect
peripheral deficits via randomized stimuli.Myopia: Snellen-style
E-chart with adjustable clarity. Contrast sensitivity: letters with
varying contrast (Pelli-Robson).Color vision: VR-adapted Ishihara
plates estimating red–green deficiencies.

Figure 1: Color Vision Test

2.4 Visualization & Iterations
Simulated impairment views (e.g., color blindness) support aware-
ness. Iterative testing added an “Unsure” option, clearer instructions,
simplified inputs, and minimal visuals for comfort.
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Figure 2: Color Vision Visualization

3 Evaluation Methods
We conducted a two-part user study with 33 participants at NUS
during the 26th STePS event. A pre-survey collected demographics
and VR familiarity, while a post-survey assessed usability, comfort,
and perceived effectiveness via 5-point ratings and open feedback.
Two team members facilitated and observed sessions. For three
participants who recalled eyeglass prescriptions, myopia readings
were compared against tool estimates for preliminary validation.

Participants were 66.7% aged 20–29, 18.2% aged 30–39, and 15.2%
aged 40+. Gender distribution was balanced (51.5% male, 45.5%
female, 3% undisclosed). Prior VR experience varied: 36.4% novices,
33.3% occasional, 30.3% frequent users.

4 Results
Average ratings (mean ± SD) were: Intuitiveness 4.45 ± 0.63, Ease
of Use 4.48 ± 0.58, Clarity 4.35 ± 0.66, Feedback Usefulness 4.23 ±
0.72, Confidence in Accuracy 3.76 ± 0.97, and Comfort 4.27 ± 0.76.
Users highlighted ease of use and intuitiveness, but showed lower
trust in accuracy, reflecting the need for clinical validation.

For myopia, VR estimates closely matched recalled prescriptions:
–2.00D vs –2.50D, –4.50D vs –4.75D, and –3.00D vs –3.25D. Devi-
ations were within 0.5D, suggesting the tool provides reasonable
approximations though not precise diagnostics.

Figure 3: Ease of use distribution

4.1 Qualitative Feedback
Open-ended feedback highlighted areas for refinement. Users sug-
gested clearer instructions (e.g., bold text, diagrams, voice-overs),
simpler interactions (fewer clicks, larger keyboard), and improved
UI design (higher contrast, consistent textures). Some requested
extended tests and clearer result explanations. About 24% reported
mild discomfort (eye strain, dizziness, or headset–glasses fit issues),

though no severe problems occurred. Minor technical glitches (e.g.,
boundary view leak) were noted.

5 Acceptance and Limitations
Overall acceptance was high: 91% would reuse the tool, citing ease
of use and comfort. Hesitancy (9%) stemmed from limited accuracy
and preference for traditional exams. Limitations include modest
diagnostic precision (e.g., myopia in 0.5D steps), small sample size
(33 participants), and reported discomfort, highlighting the need
for clinical validation and ergonomic refinements. We acknowledge
that the test was done in an informal environment and further
testing is required in controlled clinical settings with diverse patient
populations to rigorously evaluate performance and reliability.

6 Conclusion
VRCare demonstrates feasibility as a self-guided, VR-based eye
screening tool. While diagnostic accuracy and ergonomics require
further work, strong usability ratings and positive reception under-
score VR’s potential for accessible, remote eye care.
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